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ABSTRACT

We present an approach to estimate distance-dependent heterogeneous associations between point-
referenced exposures to built environment characteristics and health outcomes. By estimating
associations that depend non-linearly on distance between subjects and point-referenced exposures,
this method addresses the modifiable area-unit problem that is pervasive in the built environment
literature. Additionally, by estimating heterogeneous effects, the method also addresses the uncertain
geographic context problem. The key innovation of our method is to combine ideas from the non-
parametric function estimation literature and the Bayesian Dirichlet process literature. The former is
used to estimate nonlinear associations between subject’s outcomes and proximate built environment
features, and the latter identifies clusters within the population that have different effects. We study
this method in simulations and apply our model to study heterogeneity in the association between fast
food restaurant availability and weight status of children attending schools in Los Angeles, California.

Keywords Bayesian Non-Parametric · Built Environment · Heterogeneous Effects.

1 Introduction

The relationship between amenities in or near residential, work or school–neighborhood environments and health is
receiving increasing attention, given that these environments can influence health-related behaviors and subsequent
outcomes. Where spatial proximity to supermarkets is associated with diet, so too are recreational facilities associated
with physical activity and fast food restaurants near schools associated with child obesity [Baek et al., 2016a, 2017,
Kaufman et al., 2019, Kern et al., 2017]. Work in this area has been limited by the lack of knowledge of what
geographic units are most relevant for exposure assessment, i.e. the well known modifiable unit areal problem (MAUP)
[Fotheringham and Wong, 1991, Spielman and Yoo, 2009, Wong, 2009, Guo and Bhat, 2004, Ji et al., 2009, James
et al., 2014]. Additionally, there may also be measured or unmeasured person-level behaviors or characteristics that
give rise to the “uncertain geographic context problem” (UGCP) [Macintyre et al., 2002, Kwan, 2013, 2018]. Whereas
the former establishes that using different spatial units or spatial scales to define exposure measures will yield different
estimates of association, the latter acknowledges that the most relevant spatial unit may differ from place to place or
subject to subject due to place or person characteristics such as predominant transport modes in a given area or vehicle
ownership, among others.

Recent work has begun addressing these issues by foregoing the pre-specification of the spatial unit used to construct
exposure metrics [Baek et al., 2016a, Peterson and Sanchez, 2018]. Instead, the association between proximity to
amenities of interest, broadly referred to as built environment features (BEFs), and subjects’ outcomes is estimated as a
continuous function of distance between subjects and amenities. Whereas typical models regress the outcome on a BEF
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metric that depends on a pre-defined scale, these new methods use all the pair-wise distances between subjects and
BEFs as inputs to the model. Specifically, in order to address the MAUP, an idealized smooth function f(d) is used to
represent the association between the health outcome of interest and a single BEF placed at distance d > 0 from the
subject. Having f(d) as the objective of inference enables the visualization of whether and how the association between
availability of amenities and outcomes dissipates with distance, as well as estimation of the spatial scale, defined as the
distance at which the association is negligible, i.e. d : f(d) = 0.

The function f(d) has been modeled in different ways: Baek et al. [2016a] estimated f(d) non-parametrically by first
discretizing the distances into a grid, and using the count of distances within bins defined by the grid as predictors
in a Distributed Lag Model (DLM), i.e., the count of distances within each bin are conceptualized as distributed
lag predictors, indexed by the corresponding value of the grid. The coefficients corresponding to each distributed
lag predictor are smoothed using splines, yielding estimates of f(d) at the values of d used to construct the grid.
Alternatively, Peterson et al. [2021] modeled f(d) parametrically, typically using exponential functions to enforce the
substantive belief that the association between health outcomes and spatial availability of amenities monotonically
decays across distance, e.g. f(d) ∝ exp(−dθ ). However, the estimation of f(d) at the population level, as the previous
methods propose, fails to account for the concerns the UGCP raises regarding unmeasured person-level behaviors or
place-level factors that may determine subject – or location – specific spatial association.

Building upon their work in DLMs, Baek et al. [2016b, 2017] constructed a hierarchical DLM (HDLM) allowing for
the estimated f(d) to vary between subjects and or locations, according to pre-specified groups (e.g., different f(d) by
sex), as well as unexplained variation in the association (i.e., using the idea of random coefficients to estimate f(d)
for individual subjects). However, the HDLM approach, has some disadvantages: (1) it uses discretized distances to
estimate association across space, unnecessarily coarsening the exposure information; (2) it requires pre-specifying
the groups where heterogeneity in the association may occur (covariates and or subjects); and (3) by enforcing that
heterogeneity in the association estimates to occur at the subject-level through random effects, it loses possible gains in
precision that could result from pooling subjects with similar levels of association.

Motivated by the desire to identify schools where pupils may be at greater risk of obesity related to the proximity of
fast food restaurants (FFRs), we propose a model that clusters schools-specific association curves, f(d) according
to the strength of association between the spatial proximity of nearby FFRs and child obesity. Clustering provides
investigators and policymakers with a greater understanding of the kinds of relationships that exist between students
and their environment as well as identifies schools where students may be at greater risk, as identifying risk groups
may help prioritize population level interventions. The data for this motivating study consists of body weight status
of children nested within schools across Los Angeles County during academic years 2001-2008. Distances between
schools and FFRs are calculated from geocoded school addresses, supplied by the California Department of Education,
and geocoded FFR business addresses from the National Establishment Time Series Database[Walls, 2013]

Our method uses the Dirichlet Process Mixture (DPM) prior and a spline basis function expansion to non-parametrically
estimate both the number of cluster-BEF effects, and the nonlinear association functions across space, respectively. We
name our method the Spatial Aggregated Predictor - Dirichlet Process, to reflect this dual non parametric estimation,
but refer to it more generally as STAP-DP, given its potential for also modeling temporal exposures. Our approach is
inspired by the work of Rodriguez et al. [2014] and Ray and Mallick [2006] on clustering functions using DPM family
priors. We use the penalized spline approach developed by O’Sullivan [1986] and further popularized by [Wahba, 1990,
Wood, 2017] to construct the estimates of the association functions, and use the DPM to cluster the spline coefficients.

Section 2 describes the model that estimates homo- and heterogeneous BEF effects. Section 3 studies the performance
of the STAP-DP model in a variety of simulated data settings and discusses how the results may inform normative
practice. Section 4 describes the application of the STAP-DP model to the motivating study on child obesityin Los
Angeles. We conclude our work with a discussion of the model and future directions to explore.

2 Model

We now introduce the STAP-DP framework, describing how we incorporate the estimation of heterogeneous BEF
effects into a regression framework. We limit our discussion to the estimation of only one BEF’s effects in space, FFRs
for example, as the extension to multiple BEFs is straightforward. We organize our discussion into four parts. First, we
build intuition for our approach by defining the STAP estimated via spline basis functions at the population level, i.e.,
homogeneous effect. Then, we define how to extend the STAP model to estimate heterogeneous effects – at the latent
cluster level – for a univariate outcome. In the final two sections we generalize the clustering framework for repeated
outcome measures and discuss estimation.
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2.1 The STAP Model

Suppose a continuous outcome Yi (i = 1, ...N ) and corresponding covariatesXi ∈ Rn×p are observed for a sample of
N subjects. Additionally, spatial data, Di which contains distances, d, between subject i and all FFRs within some
substantively determined radius R, are also measured. The inferential objective is to estimate function f(d), which
represents the expected difference in the outcome associated with placing a single FFR at distance d after adjusting for
covariatesXi. Defining F (Di) :=

∑
d∈Di

f(d), as the aggregated FFR effect under the assumption of additivity, we
complete the initial STAP model formulation:

Yi = XT
i γ + F (Di) + εi, (1)

εi
iid∼ N(0, σ2),

where εi is the residual error, with variance σ2.

As mentioned in Section 1, there are a number of approaches to model f(d). In this work, we propose to model f(d) as
a linear combination of basis functions, {φ}Ll=1, which allows us to rewrite F (Di) as follows:

F (Di) =
∑
d∈Di

f(d) =
∑
d∈Di

L∑
l=1

βlφl(d), (2)

where φl(d) is the evaluation of the distance through the lth basis function and βl is the corresponding regression
coefficient. In this work we use L spline basis functions defined across a set of equally spaced knots, though other knot
placements or basis functions could be used. In order to avoid over fitting when L is large, the regression coefficients
are regularized through the use of a quadratic penalty on β implemented through a smoothing matrix S and tuned by
penalty parameter τ . We use the difference penalty matrices of Eilers and Marx [1996], a widely used spline penalty
formulation.

Within a Bayesian paradigm, this penalty is equivalent to specifying a multivariate normal prior with improper precision
matrix τS. We adopt a variant of this Bayesian approach and, to improve computational efficiency in our more complex
model formulations discussed in the next subsection, we first transform the spline basis function expansion matrix,
Φ(d), such that the transformed coefficients can have independent normal priors [Wood, 2004, 2016]. While centering
constraints are often imposed on Φ(d) to avoid collinearity with the intercept inX , this constraint is not needed in our
model (see supplementary material). Given that rS =rank(S) < L, two precision parameters for the priors are used,
one for the first rS coefficients and a second for the last L− rS coefficients:

β1 ∼MVNrS
(
0, σ2τ−11 IrS

)
β2 ∼MVNL−rS (0, σ2τ−12 IL−rS ) (3)

τz
iid∼ Gamma(aτ , bτ ) z = 1, 2.

In (3) we denote βz , z = 1, 2, as the regression coefficients in the penalty range and null space, respectively.
Correspondingly, τ1 and τ2 are the respective precisions for these separate subsets of β. For ease of further exposition
we define Λ as the diagonal covariance matrix which has τ−11 as the first rS diagonal elements and τ−12 as the last
L−rS diagonal elements, so that the prior in (3) can be written simply as β ∼MVNL(0, σ2Λ). We place independent
conjugate Gamma priors on τ = (τ1, τ2) so that both β’s and τ ’s conditional posterior distributions are available in
closed form.

2.2 STAP-DP with Univariate Outcomes

In alignment with this work’s goal to estimate heterogeneous effects, we replace Fi(Di) with Fi(Di) in (1) while
allowing for clustering in the fi(d). Given that fi(d) is represented by the fixed spline functions and random coefficients
β, we implement this clustering goal by placing a DP prior on the vector of regression coefficients, β, and associated
penalty parameter, τ :

(β, τ ) ∼ P (4)
P ∼ DP (α, P0)

P0 ≡MVNL
(
0, σ2Λ

)
×

2∏
z=1

Gamma(aτ , bτ ).

3



arXiv A PREPRINT

In (4), P is a random measure drawn from Dirichlet Process DP (α, P0), where α > 0 is a concentration parameter
reflecting the variability of distribution P around base measure P0 [Ferguson, 1973, Gelman et al., 2013]. P0 is chosen
to retain the prior previously discussed in (3).

By placing the DP prior on (β, τ ), clustering is induced on the fi(d) as can be seen from the stick breaking construction
of the DP: P =

∑∞
k=1 πkδ(β?,τ?)(·). In this representation πk represents the probability the ith observation is assigned

to the kth exposure function and δ(·) is the dirac-delta function. Each πk, itself is composed of the “broken sticks”
created from variables drawn from a Beta distribution: πk = vk

∏
u<k(1− vu); vk ∼ Beta(1, α).

Combining all these pieces together, our proposed STAP-DP model for univariate outcome Yi takes the following form:

Yi = Xiγ +
∑
d∈Di

L∑
l=1

βilφl(d) + εi (5)

εi
iid∼ N(0, σ2)

(β, τ ) ∼ P
P ∼ DP (α, P0)

P0 ≡MVNL
(
0, σ2Λ

)
×

2∏
z=1

Gamma(aτ , bτ ).

A final comment is warranted regarding the choice of the number and placement of the L knots in constructing the
splines. While our approach follows previous work in placing a sufficient number of knots equally across the domain of
observed distances, deciding what number of knots is “sufficient” requires greater statistical judgement than in standard
applications. Clusters may be more difficult to detect when the dimension on which clusters are formed (i.e., number
of coefficients) is large and the between-cluster differences are small (low signal effects). Conversely, more clusters
may be identified in a setting with a stronger signal and greater number of knots. Thus, L must be chosen to balance
accuracy in both function estimation and cluster discrimination.

2.3 STAP-DP with Repeated Measurements

Extending (5) to correlated outcomes, we consider the setting in which subjects are measured repeatedly over time, for
j = 1, ..., ni occasions. This results in outcome Yij (i = 1, ..., N, j = 1, ..., ni) modeled as a function of covariates
Xij , and their corresponding coefficients γ. The distance set adopts the new visit-specific index as well, i.e., Dij ,
indicating it may vary over time; for instance FFRs may open and close between measurement occasions. Finally, a
subset ofXij , Zij , is included in the model, along with subject-specific coefficients bi ∼MVN(0,Σ) to account for
within subject variability in standard fashion [Fitzmaurice et al., 2008]. Augmenting (4) accordingly, we arrive at our
final model:

Yij = XT
ijγ +

∑
d∈Dij

L∑
l=1

βilφl(d) +ZTijbi + εi (6)

bi
iid∼ N(0,Σ)

εi
iid∼ N(0, σ2)

(β, τ ) ∼ P
P ∼ DP (α, P0)

P0 ≡MVNL
(
0, σ2Λ

)
×

2∏
z=1

Gamma(a, b).

2.4 Estimation

In order to fit models of the form described in (4) and (6), we truncate the DP so that a blocked Gibbs sampler can
be used to draw samples from the posterior [Gelman et al., 2013]. While this sampler is fairly straightforward, it
bears mentioning that Φ(d) has to be adjusted at each iteration of sampling so that any DP components associated
with 0 or some small number of observations are not included in the usual matrix inversion used to estimate the mean
of the conditional posterior distribution for the regression coefficients, β∗ = [γ,β]T . Instead, coefficients for those
low-member cluster components are sampled with draws from the prior. For example, if on the mth iteration, none of
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the N observations are assigned to the kth DP component, then the samples of the spline regression coefficients for that
iteration, β(m)

k , are drawn from a MVNL(0, σ2Λk) prior, where Λk is the cluster specific covariance matrix, and the
columns of zeros that would otherwise be included in Φ(d) are omitted.

We present the closed form conditional posteriors and associated algorithm in the Supplementary Material. Our
algorithm is implemented in C++ which can be called from our R package rstapDP [Peterson, 2020a, Peterson and
Sánchez].

For both our simulations and California data we use rstapDP to fit the STAP-DP in R (v.4.0.2) R Core Team [2019] on
a MacOS Catalina operating system with a 2.8 GhZ Quad-Core Intel Core i7 processor.

3 Simulations

3.1 Simulation Design

For a given sample size, the ability of the STAP-DP model to correctly classify subjects depends on (a) the proportion
of subjects belonging to that cluster, (b) the difference in the fi(d) functional forms, and (c) the distribution of distances
(i.e., exposure information) present within each cluster. As the first of these three principles follows straightforward
sample-size intuitions, in this section we study the STAP-DP’s ability to correctly recover cluster specific functions,fi(d),
and cluster partitions in the latter two settings. Using simulated data we vary: (i) cluster effect size and (ii) distance
distributions in order to see how these may impact correct cluster classification. We focus on evaluating cluster
classification accuracy as it is the upstream predictor of all remaining model components, like the estimation of the
fi(d), which are all standard Bayes estimators conditional on the correct cluster classification.

We evaluate our method’s ability to correctly classify subjects using a partition loss function developed by [Binder,
1978] and used regularly in DP and other mixture model applications where label-switching may be of concern [Lau
and Green, 2007, Wade et al., 2018, Rodriguez et al., 2008]. Our employment of the loss function equally weights
correct and incorrect classification, using the subjects’ true and estimated class indicators, ζi, ζ̂i, respectively:

ψ(ζ, ζ̂) =
∑

(i,i′);i<i′<N

I(ζi = ζi′ , ζ̂i 6= ζ̂i′) + I(ζi 6= ζi′ , ζ̂i = ζ̂i′). (7)

Conceptually, (7) tallies the number of times that observations i and i′ are incorrectly assigned to different clusters,
when they in fact belong in the same cluster, as well as tallies when they are incorrectly assigned to the same cluster.

In each simulation setting discussed below, we generate 25 datasets and then fit the STAP-DP model shown in (4),
truncating the DP at K= 50 and using weakly informative Gamma(1,1) priors on σ−2, α, τ1 and τ2, respectively. We
draw 2000 samples from the posterior distribution for inference via Gibbs Sampling using rstapDP after discarding
2000 initial samples for burn-in. Across all 25 simulations we evaluate the loss (7) across all M = 2000 iterations of the
posterior samples drawn via Gibbs sampling. Given that the loss function does not have a standard range, we normalize
the loss results by the maximum loss across all simulation settings, so as to make the results more interpretable relative
to one another. We have organized the files used to run the simulations in the STAPDPSimulations R package available
via Github.

3.2 Cluster Effect Size

Our first simulation study focuses on model performance as a function of the difference between two clusters’ f(d),
defined in (8) below, with each observation having a 50% probability of being assigned to either of these clusters. The
cluster function set-up is intended to mimic a hypothetical high and low risk population scenario, in which subjects with
equivalent exposure to the same BEFs experience different effects according to which risk population they belong. For
each subject we generate a random number of distances uniformly so that the average number of BEFs is 15. Conditional
on the number of distances, the distances themselves are then generated according to the “Skew” distribution shown in
Figure S1 in the Supplementary Information. This distribution was selected in order to test our model’s performance
under a “worst case scenario”, given that with this distribution there is relatively less exposure information at the

5
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distances where the BEF effects are non-zero. Specifically, the generative model takes the following form:

Yi = 26 + .5Zi +
∑
d∈Di

fζi(d) + εi (8)

εi ∼ N(0, σ2 = 1) i = 1, ..., 200

f1(d) = exp

{(
−d
.5

)5
}

f2(d) = ν exp

{(
−d
.5

)5
}

ν = (0, .25, .5, .75)

P (ζi = 1) = P (ζi = 2) = .5;

where Zi is a covariate generated as a fair Bernoulli random variable, ζi is the subject specific cluster label indicating
the true BEF effect, f(d), for the ith observation, and ν represents the varying effect size at d = 0.

The relative loss as a function of the effect size ν is shown in Figure 1. As expected, one can see a decrease in relative
loss and consequently improved classification as the effect size increases.
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Figure 1: Relative loss as a function of the difference in effect size: (1− ν); see (8) for more details. Point estimates
and error lines represent median, 2.5 and 97.5 quantiles of loss across simulations, respectively.

3.3 Distance Distributions

As our method non-parametrically estimates cluster functions fi(Di) across continuously measured space using a basis
function expansion, correct estimation of the function requires there to be BEFs observed at the relevant distances,
d : f(d) 6= 0, within the study area of interest. Of course these “relevant” distances are not known a priori and so it is
to the benefit of the investigator to err on the side of caution in specifying a larger study area if possible. However,
despite any preparatory work that may be done to ensure an adequate area is included at the level of the sample study, it
is not clear how differing distributions of distances at the latent cluster level may impact inference. For example, will
suburbanites’ lower exposure to proximate FFRs impact the ability of the stapDP model to discern the impact of FFRs
on their health relative to their more exposure rich urban counterparts? For this reason our second simulation study
examines how exposure to different distance distributions may impact classification.

We study this problem by considering three different generative distance distributions which we label “Uniform”,“CA”
and “Skew”. The first, straightforwardly, refers to the idealistic - but unrealistic - scenario in which there is equivalent
information available at all distances within the study area. The second two cases refer to more realistic situations
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in which there are more likely to be a higher number of BEFs found further away from the subject than close by – a
consequence of area’s quadratic growth as a function of distance. We create the first of these skewed distributions,
“CA”, by using maximum likelihood to fit a beta distribution to the distribution of distances in our motivating California
data distance distribution and the second by altering a beta distribution to be a more extreme version of the first. We
generate distances under each distribution for each cluster in order to examine how differing exposure patterns between
clusters impact cluster classification. The densities of each of these distributions can be found in Figure S1 in the
supplementary material.

Since the exposure information depends both on the distribution of distances and the number of BEFs, we generate
scenarios where the amount of information increases as a function of the number of BEFs within the same distribution.
We simulate data under the same model as proposed in (8), with ν = 0.25, to illustrate how a substantial, but not
obvious, difference in cluster functions manifest across the varying distance distribution settings. Fitting our STAP-DP
model under the priors and sampler settings previously described, we plot the results below in Figure 2.
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Figure 2: Relative loss as a function of different distance distributions. Points and lines represent median, 2.5 and 97.5
quantiles of loss, respectively. Row labels represent the distance distribution of the lower effect size cluster and columns
that of the higher effect size cluster.

Figure 2 shows a number of patterns worth highlighting. First, across all distance distributions we observe a decrease in
loss as the number of built environment features increases. This is as expected – more information or exposure results
in a more easily detectable signal. Further, distance distribution combinations that include more information result in
lower levels of relative loss compared to more skewed distance distributions. There are number of cases where this
can be seen in Figure 2, the most obvious being the top-left diagonal panel where both clusters have Uniform distance
distributions; this has the lowest loss values across all panels due to the relative abundance in exposure information.
This pattern holds when comparing to the more skewed distributions: The uniform-CA combination has higher error
than the uniform-uniform combination when there are a relatively small number of built environment features present.
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4 Fast food restaurants near schools and child obesity among public school students in Los
Angeles

There is a pressing need to understand contextual determinants of child obesity, in order to implement population level
strategies to reduce and prevent it[McGuire, 2012]. The food environment near schools has been proposed and studied
as a contextual factor that influences children’s diet, and thus obesity [Currie et al., 2010, Davis and Carpenter, 2009,
Sánchez et al., 2012, Baek et al., 2016a]. We use data on body weight of children attending public schools in Los
Angeles, CA, along with data on the locations of FFRs as a marker of the food environment near schools, and apply
our proposed method to identify schools where children may be at higher risk of obesity, related to food environment
exposures. Identifying these schools may help prioritize or tailor population-level interventions to address child obesity.

4.1 Data Description

Every year public schools in the State of California collect data on the fitness status of pupils in 5th, 7th and 9th grade,
as part of a state mandate, using the Fitnessgram battery of tests [Institute, 2001]. Child-level data available for our
analysis were collected during academic years 2001-2008 on 5th and 7th graders, and consists of children’s weight
(Kg) and height (m) and, and the following categorical covariates: sex, race-ethnicity, fitness status (unfit, fit, fit above
standard), and grade level. Weight and height are transformed to body mass index (Kg/m2), and standardized to BMIz
scores according to age- and sex-specific growth curves published by the United States’ Center for Disease Control. In
contrast to adults, standardization is needed when analyzing data from children of different ages, given children’s rapid
growth. To aid in managing the large database, and given that all child-level covariates are categorical, the dataset is
“collapsed” so that each row represents a group of children within each school defined by the cross-classification of
categorical child-level characteristics described above. The average BMIz of children in the group is the outcome of
interest. Given the categorical nature of the covariates and our use of weighting by the size of the group represented by
each row (below), this approach yields exactly the same results as would be obtained if data had not been grouped, thus
avoiding biases in an ecological analysis [Schoenborn, 2002].

Data on school-level characteristics are also available from the CDE website (see Table 1), and, importantly, so is the
geocode of the school. School geocodes were used for two purposes. First, the geocodes were used to link schools
to census tract level covariates. Second, the school geocodes were used to calculate the distances between the school
and the geocoded location of each FFR in the LA area. FFRs were identified from the National Establishment Time
Series (NETS) database [Walls, 2013], using a published algorithm that classifies specific food establishments as FFRs
[Auchincloss et al., 2012]. Only FFRs within five miles of schools were kept for this analysis. This distance was chosen
to be a conservative as previous work estimated that the distance at which FFRs cease to have an effect on childhood
obesity is approximately one mile [Baek et al., 2016a].

4.2 Los Angeles STAP-DP Model

We fit models estimating both the population-level and latent cluster-level effects – STAP and STAP-DP models,
respectively. Given the available data consisting of subgroups of children defined by the cross-classification of
categorical covariates, we use the standardized average BMI within the subgroup as the outcome. The models adjust for
the student group and school-level covariates listed in Table 1. Denoting these covariates as Xijq for student group
q = 1, ..., nij , measured at year j = 2001, ..., 2008, attending school i = 1, ..., N , and using notation as described in
(6) our model for analyzing the Los Angeles data is:

BMIzijq = XT
ijqγ + Fi(Dij) + bi1 + bi2

yearij
10

+ εijq, (9)

εiqj ∼ N
(

0,
σ2

niqj

)
,

bi ∼MVN2(0,Σ),

where nijq represents the number of students in student group q during year j at school i. Given that FFRs may open
or close during the study period, Dij represents the distances between school i and FFRs available within 5 miles
during year j. Similar to our simulations, we place a weakly informative Gamma(1,1) prior on each of the penalty
parameters in τ , associated with each cluster regression coefficients, the residual precision σ−2, and the concentration
parameter α. The Gamma(1,1) prior on the concentration parameter is a common prior setting in the DP literature,
reflecting the a priori expectation that the concentration parameter is 1, so that fewer clusters are favored [Rodriguez
et al., 2008, Gelman et al., 2013]. Additionally, we place a non-informative Jeffrey’s prior on the covariance matrix
for the school specific bi vector: p(Σ−1) ∝| Σ | 32 . Estimation is conducted through rstapDP, drawing 2000 samples
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from each of 2 independent MCMC chains after 8000 samples have been iterated as “burn-in” on each chain. We check
convergence via R̂ diagnostic Vehtari et al. [2020] and visually inspecting traceplots. We use L = 7 coefficients in our
spline basis function expansion, and similarly use this basis to estimate the fi(d) on a grid of values, calculating the
95% point-wise credible interval at each distance grid point. We also calculate the posterior probability of co-clustering
which can be arranged in a matrix P ∈ RN×N so that Pi,i′ = P ( school i is co-clustered with school i′ across post
burn-in iterations). School cluster characteristics are tabulated using the cluster mode school assignment calculated
using (7) as implemented in the rstapDP package via the assign_mode function.

For comparative purposes, we fit a model similar to (9) in all ways save for restricting the fi(d) to be estimated at
the population level - f(d). We fit this model using Hamiltonian Monte Carlo via the rsstap R package [Peterson,
2020b], drawing 1000 samples after 1000 warm-up across 4 independent MCMC chains. Convergence is assessed via
R̂ diagnostic and we calculate the analogous posterior estimate for f(d) across the same grid of distance values.

4.3 Los Angeles Results

Figure 3 shows four functions corresponding to the 3 estimated cluster functions from the STAP-DP model, as well as
the 1 homogeneous effect estimate. We name the three cluster effects “Majority”, “High Risk” and “Low Risk”. These
names derive from the proportion of schools assigned to the cluster as well as the relative effect size associated with the
function at and around distance 0 mi from the school: In the cluster labeled “High Risk”, one additional FFR placed at
distance 0 from a school is associated with an expected 0.46 higher BMIz among students attending those schools (95%
CI: 0.36, 0.58), all else equal. In contrast, placing one FFR at distance 0 from the schools assigned to the “Low Risk”
cluster is associated with lower BMIz score, by -0.15 (95% CI: -0.17,-0.12), all else equal. The analogous values for
the “Majority” and homogeneous function estimates, are 0.01 (95% CI: 0.00,0.02) and 0.01 (95% CI: 0.01,0.0132),
respectively. In all clusters, the estimated associations rapidly decay with increasing distance, with all association
estimates effectively zero by 1 mile.

Figure 3: Changes in student BMI associated with FFR exposure across 5 mi. Line and band represents median and
95% posterior credible interval. The number following Each cluster label represents the median proportion of schools
that are assigned to that cluster. Dotted line (colored red online) represents 0 reference line. Please note that the y-axis
is different between the two rows.

We now turn our attention to the matrix of co-clustering probabilities P which we visualize using a heat-map in
Figure S2 in the Supplementary material, after applying Rodriguez et al. [2008]’s hierarchical sorting algorithm to
group schools with similar co-clustering probabilities together. The estimate of co-clustering probabilities shows
approximately 550 schools (90%) are consistently co-clustered within one of the three clusters, reflecting a high
degree of model certainty in cluster configurations for these schools. The remaining ≈ 50 schools show a greater
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uncertainty between being classified in the “Majority” or “Low Risk” cluster. This uncertainty likely stems from an
insufficient number of FFRs present within the relevant ≈ 1 mile distance from schools, where the cluster effects are
most discernibly different.

Further examination of the school characteristics associated with each cluster details several suggestive, though not
conclusive between-cluster differences (Table 1). Differences between the three clusters of schools are fairly muted,
with summary statistics across student- and school-level measures describing similar student populations and levels of
median household income and education amongst the neighborhoods of schools in each cluster. The most noteworthy
differences amongst the clusters are in the number of FFRs within 1

2 mile of the school – lower in the high risk group as
compared to the other two clusters – and the total enrollment – higher in the low and high risk groups as compared to
the majority cluster.

Overall Majority Low Risk High Risk
# Students 752,529 655,017 62,573 34,939
% Obese 52 52 51 46
Average BMIz 0.84 0.85 0.78 0.71
% Female 49 49 49 49
Race/Ethnicity

% Asian 3 2 2 7
% Black 10 10 14 13
% Hispanic 79 80 73 62
% White 8 8 10 18

School Characteristic1 N = 593 N = 535 N = 36 N = 22

Total Enrollment (100’s of students) 7.7 (5.0, 13.0) 7.5 (4.9, 12.8) 10.7 (6.3, 15.4) 10.7 (6.2, 12.7)
# FFRs within 1/2 mile 23 (8, 45) 23 (8, 46) 24 (8, 48) 14 (5, 24)
# FFRs within 1 mile 101 (69, 143) 103 (68, 144) 92 (70, 126) 89 (74, 115)
% Free or Reduced Price Meals 0.86 (0.69, 0.94) 0.86 (0.69, 0.94) 0.85 (0.75, 0.93) 0.80 (0.58, 0.95)
Education2 14 (5, 27) 14 (5, 28) 13 (7, 25) 13 (5, 23)
Income3 (1000 USD) 34 (25, 49) 34 (25, 49) 33 (28, 52) 32 (25, 55)
School Type

Elementary 468 (79%) 427 (80%) 26 (72%) 15 (68%)
K-12 7 (1.2%) 7 (1.3%) 0 (0%) 0 (0%)
Middle 90 (15%) 75 (14%) 9 (25%) 6 (27%)
High School 12 (2.0%) 11 (2.1%) 1 (2.8%) 0 (0%)
Other 16 (2.7%) 15 (2.8%) 0 (0%) 1 (4.5%)

Urbanicity
Suburban 75 (13%) 66 (12%) 6 (17%) 3 (14%)
Urban 518 (87%) 469 (88%) 30 (83%) 19 (86%)

Table 1: Characteristics of children and schools in each cluster, assigned using the mode cluster
1Statistics presented: Median (IQR); n (%)
2 Percent of individuals 25 years or older within the school’s census tract with at least a bachelors degree.
3 Median Household Income among residents in the census tract where the school is located.

The lack of substantial differences in measured characteristics between these two clusters is noteworthy, suggesting that
none of the observed characteristics appear to modify the obesity risk associated with FFR exposure. Although prior
research shows that area-level education and income modify the effects of child obesity interventions, for instance, the
protective effects of socioeconomic factors do not appear to extend to children’s risk of obesity as due to proximate
FFR exposure – at least within this population. This lack of difference in socioeconomic characteristics suggests that
there are unmeasured variables that account for the heterogeneous FFR effects. One potential unmeasured factor could
be the type of FFRs proximal to the schools, e.g. chains vs non-chain FFR’s. Another possibility could be unmeasured
student-level measures of wealth – which may modify obesity risk – but we are not able to account for in our analysis.

5 Discussion

This work proposed a modeling approach to identify heterogeneity in distance-dependent BEF effects. By allowing
flexibility both across space and identifying subgroups of subjects with different effects, this modeling framework
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addresses two problems raised in the built environment literature, namely the MAUP and the UGCP, respectively.
The modeling approach was shown to work well in both simulated data, as well as the data that motivated this work,
concerning children’s BMI and proximity to FFRs near their schools. While spatial point pattern built environment data
are the primary motivation for this methodology, it could be also be applied to temporal or spatio-temporal data, the
latter which we discuss in greater detail below.

Similar to the HDLM proposed by Baek et al. [2016b], we seek to allow for differences across subjects, or other
substantively defined groups like schools, in the BEF associations across space. In contrast to that work, we pool
subjects with similar association effects through the DPM, allowing us to identify latent risk subject groups.

In simulations our model demonstrated classification robustness to differing distributions of distances and expected
improvement in classification due to increased information through BEF exposure or effect size. Our analysis of
Fitnessgram data illustrated how one can analyze these data in terms of the spatial effects estimated as well as the
characteristics associated with each latent cluster. The software to fit this model and perform the necessary auxiliary
functions is freely available through our R package rstapDP [Peterson, 2020a].

There are a number of future directions with which to take this work. One obvious direction would be to extend
the modeling framework for more general exponential family error distributions, though this makes estimation more
difficult, as the posterior distribution of β is no longer available in closed form. Work by Ferrari [2020] has used a
Riemann Hamiltonian Monte Carlo sampler in this context for models similar to ours, without smooth functional terms.
This could provide one avenue to pursue. Another direction to explore would be to incorporate temporally indexed BEF
data to enable spatio-temporal function estimation via tensor product of the spline basis function expansion used here.
This approach would allow for cluster estimates across space and time, increasing the dimensionality and consequently,
relevancy, of this work to more precisely target and understand how environments shape health and health behaviors
across both time and space.

Finally, while there have been numerous methods to identify associations between subjects and BEF exposure we
believe this to be the first to utilize techniques in both the Bayesian and functional non-parametric literature to identify
heterogeneous BEF effects across a population.
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