Adapted Nested Dirichlet Processes for Built Environment Data

Adam Peterson Veronica Berrocal Brisa Sánchez

DataPhilly

June 17, 2020

Motivating Questions

- ▶ Does where we live with respect to stores, schools, parks, etc. matter?
 - 1. Are there patterns in accessibility to these amenities?
 - 2. Are these patterns relevant to our health?

Illustration

Fast Food Restaurant ▲ School

Illustration (2)

Underlying Model

Complicating Questions

- 1. How do we identify these intensity functions?
 - We don't know what shape they are need to estimate them flexibly!
- 2. How many intensity functions?
 - Could be as many as there are schools! (Probably not)

Intensity Estimation

Mixture model

- Express the observed density as a mixture of simpler, more easily parameterized densities
- ▶ Obstacle: How many simpler densities should we use?
- ► Solution: Dirichlet Process

Dirichlet Process

Dirichlet Process(DP): A distribution on distributions

Intensity Estimation - Dirichlet Process

This will allow us to estimate the global intensity ...

Sub Density Estimation - Nested Dirichlet Process

"Just as the DP is a distribution on distributions, the NDP can be characterized as a distribution on the space of distributions on distributions." (Rodriguez et al. 2008)

Heirarchy Layer 1

School	Distances			
1	0.05	0.09	0.15	0.23
2	0.03	0.06	0.18	

... J-1 0.55 0.67 J 0.75 0.84 0.93

Heirarchy Layer 2

Adapting the NDP: Connecting to Health Outcomes

- ► The NDP only helps us to *identify* the differing patterns in spatial exposure.
- ▶ We need a different strategy to *link* these patterns to a health outcome of interest.
- ► Health Outcomes Models:
 - "Conservative" GLM (CGLM)
 - Bayesian Kernel Machine Regression (BKMR)

Second Stage Analysis: Health Outcomes Models

BKMR

$$logit(\pi_j) = \alpha + \mathbf{Z}_i^T \boldsymbol{\delta} + h_j(\mathbf{P})$$
$$h_j(\mathbf{P}) \sim \mathcal{GP}(\mathbf{0}, \kappa(\mathbf{p}_j, \mathbf{p}_{j'} | \sigma, \phi))$$

- ▶ **P** is the pairwise probability matrix of co-cluster membership derived from the cluster assignment labels
- $\blacktriangleright \kappa(\cdot,\cdot|\sigma,\phi)$ a valid covariance function

CGLM

$$\operatorname{logit}(\pi_{j*}) = \alpha_{j^*,k} + \mathbf{Z}_{j*}^T \boldsymbol{\delta}$$

 j^* selected by intersection of posterior credible ball bounds

Application: FFR Exposure around CA highschools

- ▶ 782 high schools in CA during academic year 2010
 - ightharpoonup pprox 4000 Fast Food Restaurants within 1 mile of the school.
- Proportion of obese 9th graders estimated as a function of exposure profile, adjusting for relevant covariates.

California FFR Exposure

NDP Results: Co-Clustering Probabilities

NDP Results: Cluster Intensities

Health Outcome Models

Probability of Obesity

Questions?

Supplementary Material

Adapted NDP: Model Assumptions

Model

$$p(\lbrace r_{ij}\rbrace_{(i,j)=(1,1)}^{(n_{j},J)}|f_{j}(r),n_{j}) \propto \prod_{j=1}^{J} \prod_{i=1}^{n_{j}} f_{j}(r_{ij})$$

$$f_{j}(r) = \int \mathcal{K}(r|\theta)G_{j}(\theta)$$

$$G_{j} \stackrel{iid}{\sim} Q$$

$$Q \sim DP(\alpha', DP(\rho, H_{0}))$$

Assumptions

- Inhomogenous Poisson Process:
 - conditional on n_j the distances $r_{ij} \stackrel{iid}{\sim} f_j(\cdot)$
- ► Independence between schools

Model Specification

$$egin{aligned} \lambda_{j}(r) &= \gamma_{j}f_{j}(r) \quad \gamma_{j} \in \mathbb{R}^{+} \\ r'_{ij} &= \operatorname{probit}(r_{ij}) \end{aligned} \ f_{j}(r') &= \int \operatorname{Normal}(r'|\mu, au) dG_{j}((\mu, au)) \ G_{j} \overset{iid}{\sim} Q \ Q &\equiv \sum_{k=1}^{\infty} \pi_{k} \delta_{G_{k}(\cdot)}(\cdot) pprox \sum_{k=1}^{K} \pi_{k} \delta_{G_{k}(\cdot)}(\cdot) \ G_{k} &\equiv \sum_{l=1}^{\infty} w_{lk} \delta_{(\mu, au)_{lk}}(\cdot) pprox \sum_{l=1}^{L} w_{lk} \delta_{(\mu, au)_{lk}}(\cdot) \ Q &\equiv DP(lpha, DP(eta, G_{0})) \end{aligned}$$