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Motivating Questions
» Does where we live with respect to stores, schools, parks, etc.
matter?
1. Are there patterns in accessibility to these amenities?
2. Are these patterns relevant to our health?
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Underlying Model
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Complicating Questions

1. How do we identify these intensity functions?
» We don’t know what shape they are - need to estimate them
flexibly!
2. How many intensity functions?
» Could be as many as there are schools! (Probably not)



Intensity Estimation

Mixture model

Global Intensity

» Express the observed density
as a mixture of simpler,
more easily parameterized
densities
» Obstacle: How many simpler
densities should we use?

» Solution: Dirichlet Process




Dirichlet Process

Dirichlet Process(DP): A distribution on distributions
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Intensity Estimation - Dirichlet Process

This will allow us to estimate the global intensity ...
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Sub Density Estimation - Nested Dirichlet Process

“Just as the DP is a distribution on distributions, the
NDP can be characterized as a distribution on the space
of distributions on distributions.” (Rodriguez et al. 2008)

Nested Dirichlet Process
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Heirarchy Layer 1
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Heirarchy Layer 2
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Adapting the NDP: Connecting to Health Outcomes

> The NDP only helps us to identify the differing patterns in
spatial exposure.

> We need a different strategy to /ink these patterns to a health
outcome of interest.

» Health Outcomes Models:

» “Conservative” GLM (CGLM)
> Bayesian Kernel Machine Regression (BKMR)



Second Stage Analysis: Health Outcomes Models
BKMR

logit(mj) = o + Z76+ hi(P)

» P is the pairwise probability matrix of co-cluster membership
derived from the cluster assignment labels

» £(-,-|o, ¢) a valid covariance function

CGLM

logit(mjs) = auj i + ZJI(S

Jj* selected by intersection of posterior credible ball bounds



Application: FFR Exposure around CA highschools

» 782 high schools in CA during academic year 2010
» ~ 4000 Fast Food Restaurants within 1 mile of the school.

» Proportion of obese 9th graders estimated as a function of
exposure profile, adjusting for relevant covariates.

bendr


https://apeterson91.github.io/bendr/articles/Introduction.html

California FFR Exposure
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NDP Results: Co-Clustering Probabilities
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NDP Results: Cluster Intensities
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Health Outcome Models

School Specific Probability of Obesity
Median with 95% Credible Interval Shown. Conservative GLM Results in Brown.
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Questions?



Supplementary Material



Adapted NDP: Model Assumptions

Model
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Assumptions
» Inhomogenous Poisson Process:
. . id
- conditional on n; the distances r;; ~ f(+)

» Independence between schools



Model Specification

Ai(r) =fi(r) 7 €RY
r,{j = probit(r;)
A7) = [ Normal(7|u, )G (4 7)

G ™ Q

Q= Zwk(SGk Zﬂ-k(SGk
Gk—ZW/kCS,”,k ZWlk5ur/k

I=1

Q = DP(a, DP(53, Gp))



