Causal Inference Working Group

A Practical Introduction to Bayesian Causal Inference

Adam Peterson

University of Michigan

Table of contents

- 1. Conceptual Introduction
- $\hbox{2. Case Study}: \ \hbox{The Electric Company}$

Conceptual Introduction

Motivation

The study of Causal Inference is usually motivated by a question starting with $\mathit{What}\ if[2]$

Motivation

The study of Causal Inference is usually motivated by a question starting with What if[2]:

- What if you had been given a vaccine, would you still have gotten sick?
- What if you had majored in English, would you still have found Biostatistics?

Samples and Populations

While we can never hope to get a concrete answer to these questions for individuals we *can* get close to meaningful answers for populations

Samples and Populations

While we can never hope to get a concrete answer to these questions for individuals we *can* get close to meaningful answers for populations:

Average Treatment Effect

$$ATE = E[Y^1] - E[Y^0]$$

Samples and Populations

While we can never hope to get a concrete answer to these questions for individuals we *can* get close to meaningful answers for populations:

Average Treatment Effect

$$ATE = E[Y^1] - E[Y^0]$$

... under certain conditions

- 1. (Conditional) Exchangeability
 - Also called ignorability
- 2. Consistency
- 3. No Interference
 - Also called the stable treatment unit value assumption (STUVA)
- 4. Positivity

- 1. (Conditional) Exchangeability
 - Also called ignorability
- 2. Consistency
- 3. No Interference
 - Also called the stable treatment unit value assumption (STUVA)
- 4. Positivity

If assumptions hold then:

Average Treatment Effect

$$ATE = E[Y^1] - E[Y^0] = E[Y|Z=1] - E[Y|Z=0]$$

4

 $\ensuremath{\mathbf{Q}}\xspace$. How do we know if these conditions are satisfied?

Q: How do we know if these conditions are satisfied?

A: You don't *know* in the sense that you're 100% sure.

Q: How do we know if these conditions are satisfied?

A: You don't *know* in the sense that you're 100% sure.

:

Certain types of experiments or "experimental settings" will be more conducive towards having these conditions satisfied than others

Types of Experiments

- Randomized Control Trials (Treatment assignment is controlled)
 - Conditions should be satisfied by trial design
- Observational Data (Treatment assignment is not controlled)
 - Exchangeability: Have you measured all the right confounders?
 - Positivity: Is there sufficient variability in the exposure of interest for you to be able to detect an effect?
 - Consistency: Is the exposure well defined across all observations?
 - Interference: Does treatment assigned to one unit affect another's potential outcome?

Just the start

- Causal Inference is a Huge field of study and there is so much more to learn here than what I've gone over.
- We'll now go over a case-study to illustrate some basic concepts using regression to estimate ATE's.
- There are references at the end of this slide deck for those who want to learn further. [1, 3]

Case Study: The Electric Company

Backstory

- In 1970, a set of 192 elementary school classes were randomly
 assigned to either watch a new educational TV show or not, to see
 whether the show improved kids' reading ability.
- At the beginning and end of the school year students in all the classes were given a reading test, and the average test score within each class was recorded.

Backstory

- In 1970, a set of 192 elementary school classes were randomly
 assigned to either watch a new educational TV show or not, to see
 whether the show improved kids' reading ability.
- At the beginning and end of the school year students in all the classes were given a reading test, and the average test score within each class was recorded.

What is the question we can answer with these data?

Backstory

- In 1970, a set of 192 elementary school classes were randomly assigned to either watch a new educational TV show or not, to see whether the show improved kids' reading ability.
- At the beginning and end of the school year students in all the classes were given a reading test, and the average test score within each class was recorded.

What is the question we can answer with these data? This is an ecological analysis. Caution is warranted.

Tutorial Time

repository link

References i

M. A. Hernán and J. M. Robins. Causal inference, 2010.

A. Oganisian and J. A. Roy.

A practical introduction to bayesian estimation of causal effects: Parametric and nonparametric approaches. arXiv preprint arXiv:2004.07375, 2020.